Description: Multiobjective Optimization: Behavioral and Computational Considerations by Jeffrey L. Ringuest Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision makers choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem. Table of Contents 1. Introduction.- 1.1 Multiple-Objective Optimization.- 1.2 Dominance And Efficiency.- 1.3 Multiattribute Value And Utility Theory.- 1.4 Functional Forms And Independence Conditions.- 1.5 Value Functions As Compared To Utility Functions.- 1.6 Optimizing The Multiattribute Utility Or Value Function.- 1.7 References.- 1.8 Other Relevant Readings.- 2. Linear Goal Programming.- 2.1 The Goal Programming Model.- 2.2 Aspiration Levels.- 2.3 Weights.- 2.4 Preemptive Priorities.- 2.5 Multiattribute Value Theory.- 2.6 Specifying The Weights In An Additive Value Function.- 2.7 Sensitivity Analysis.- 2.8 References.- 2.9 Other Relevant Readings.- 3. Generalizing Goal Programming.- 3.1 Linear Goal Programming.- 3.2 Piecewise Linear Approximations Of Single Attribute Value Functions.- 3.3 Goal Programming With A Multiplicative Value Function.- 3.4 Nonlinear Goal Programming.- 3.5 References.- 4. Compromise Programming.- 4.1 Ideal Solutions.- 4.2 Compromise Functions.- 4.3 Compromise Solutions And The Compromise Set.- 4.4 The Anti-Ideal And Compromise Programming.- 4.5 The Method Of The Displaced Ideal.- 4.6 Compromise Programming, Linear Goal Programming, And Multiattribute Value Functions.- 4.7 References.- 5. Decision Making and the Efficient Set.- 5.1 The Efficient Set.- 5.2 Intra-Set Point Generation.- 5.3 Filtering.- 5.4 Clustering.- 5.5 Matching And Grouping.- 5.6 Sectioning.- 5.7 A Stochastic Screening Approach.- 5.8 References.- 5.9 Other Relevant Readings.- 6. Interactive Methods.- 6.1 The General Interactive Approach.- 6.2 Examples Of Interactive Methods.- 6.3 Simplified Interactive Multiple Objective Linear Programming (SIMOLP).- 6.4 Interactive Multiobjective Complex Search.- 6.5 Choosing An Interactive Method.- 6.6 References.- 7. Computational Efficiency and Problems with Special Structure.- 7.1 Network Flow Problems.- 7.2 Multiple Objective Network Flow ProbLems.- 7.3 A Network Specialization Of A Multiobjective Simplex Algorithm.- 7.4 Compromise Solutions For The Multiobjective Network Flow Problem.- 7.5 Interactive Methods For The Multiobjective Network Flow Problem.- 7.6 References.- 8. Computational Efficiency and Linear Problems of General Structure.- 8.1 Computational Efficiency And The Ideal Solution.- 8.2 Test Problems.- 8.3 Computer Codes.- 8.4 Results.- 8.5 Other Computational Studies.- 8.6 References.- 9. Using Multiobjective Linear Programming to Reconcile Preferences Over Time.- 9.1 Preferences Over Time.- 9.2 The Behavioral Properties Of NPV.- 9.3 A More General NPV Model.- 9.4 Using Multiobjective Linear Programming As An Alternative To NPV.- 9.5 The Advantages Of Using Multiobjective Linear Programming For Reconciling Preferences Over Time.- 9.6 References.- 10. Data Presentation and Multiobjective Optimization.- 10.1 Data Representation And The Axioms Of Utility Theory.- 10.2 The Framing Of Decisions.- 10.3 Reconciling The Decision Frame.- 10.4 Perception Of The Ideal.- 10.5 References. Promotional Springer Book Archives Long Description Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision makers choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem. Details ISBN1461366054 Author Jeffrey L. Ringuest Language English ISBN-10 1461366054 ISBN-13 9781461366058 Media Book Format Paperback Short Title MULTIOBJECTIVE OPTIMIZATION BE Year 2012 Publication Date 2012-10-23 Imprint Springer-Verlag New York Inc. Place of Publication New York, NY Country of Publication United States DEWEY 519.6 Pages 169 Illustrations XV, 169 p. Subtitle Behavioral and Computational Considerations DOI 10.1007/978-1-4615-3612-3 AU Release Date 2012-10-23 NZ Release Date 2012-10-23 US Release Date 2012-10-23 UK Release Date 2012-10-23 Publisher Springer-Verlag New York Inc. Edition Description Softcover reprint of the original 1st ed. 1992 Alternative 9780792392361 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:96394731;
Price: 115.04 AUD
Location: Melbourne
End Time: 2025-01-14T11:30:42.000Z
Shipping Cost: 9.43 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
Format: Paperback
Language: English
ISBN-13: 9781461366058
Author: Jeffrey L. Ringuest
Type: Does not apply
Book Title: Multiobjective Optimization: Behavioral and Computational Conside